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ABSTRACT

Recently, 2D-to-3D video conversion has raised great inter-
est because of the increasing demand of 3D video contents.
A critical component in semi-automatic methods is to es-
timate the depth information of non-key frames from key
frames. To overcome the sensitiveness to occlusion in exist-
ing schemes, a depth propagation method is proposed in this
paper where tensor voting is leveraged to eliminate occlusion
points, thereby derive accurate sparse depth. Furthermore,
high dimensional tensor is constructed with coordinate, mo-
tion and color features to represent points in the sparse depth.
A dense depth can be generated via tensor-voting based inter-
polation. It is robust against object occlusion and inaccurate
motion estimation because tensor voting can efficiently make
denoising and capture the structures. Experiment results
demonstrate that the proposed method outperforms state-of-
the-art semi-automatic techniques.

Index Terms— 2D-to-3D video conversion, depth esti-
mation, tensor voting, motion tracking

1. INTRODUCTION

Three dimensional (3D) video can provide an enhanced vi-
sual experience with depth perception beyond conventional
2D contents. With the growth of 3D display devices, the in-
creasing demand for 3D contents has aroused a significant
challenge to the 3D industry. A promising way is to pro-
duce new 3D videos from massive existing monocular 2D
videos [1]. A typical 2D-to-3D conversion process consists
of two steps: depth estimation and depth-based rendering.
Depth estimation is a critical problem because synthesized
stereo views cannot be well generated by depth-based ren-
dering without accurate depth (e.g. DIBR [2]).

The existing 2D-to-3D techniques can be divided into
two categories: fully automatic methods and semi-automatic
methods [3, 4, 5], depending on whether man-machine in-
teractions are involved in depth estimation. Fully-automatic
methods are limited to restricted scenarios, thus they do not
work well for arbitrary scenes. In contrast, semi-automatic
methods can balance 3D content quality with production
cost, which makes them more effective and flexible. Aiming
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at desirable 3D quality, semi-automatic methods exploit a
skilled operator who assigns depth to selected key frames in
2D videos. Later, the depth information can be propagated
automatically from the key frames to non-key frames over
the entire video sequence. Depth propagation is a major
part of depth estimation, thereby playing a critical role in
semi-automatic methods. In [4], depth is attained by bilateral
filtering and refined through a block-based motion compen-
sation from previous frames. In 2011, it was extended in [6],
where the depth map is propagated by shifted bilateral filter-
ing with motion information. Li et al. [7] propagated depth
for non-key frames via bi-directional motion estimation,
where bi-directional motion vectors are estimated to deter-
mine the depth propagation strategy. In [9], motion vectors
are estimated by the Horn-Schunk optical flow estimation. To
alleviate error propagation, post-filtering is performed before
estimating depth to the next frame. However, the methods
are still sensitive to occlusion and inaccurate motion estima-
tion. The wrong matches can be easily introduced near the
occlusion boundary, leading to inaccurate depth map. Such
problems motivate us to develop a robust method to propagate
accurate depth for 2D to 3D video conversion.

In this paper, a novel depth propagation method is pro-
posed where tensor voting is utilized to eliminate occlusion
points, thereby deriving accurate sparse depth. Then, we in-
corporate the coordinate, motion and color features to rep-
resent points in sparse depth as high dimensional tensor. A
dense depth can be derived via tensor-voting based interpola-
tion. The proposed method is robust against object occlusion
and inaccurate motion estimation because tensor voting can
efficiently make denoising and capture the structure. Exper-
iment results demonstrate that the proposed method outper-
forms state of the art semi-automatic techniques.

The rest of the paper is organized as follows: Section 2 de-
scribes the proposed method to propagate depth information
accurately for 2D to 3D video conversion. The experimental
results in Section 3 are validated to reflect the effectiveness.
Finally, Section 4 concludes this paper.

2. THE PROPOSED APPROACH

The proposed method consists of two stages: sparse depth
estimation and tensor-voting based depth interpolation. As
shown in Fig.1, given two successive frames Ft and Ft+1,
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Fig. 1. The framework of the proposed method. Green dots in
Ft+1 denotes initial points. The blue arrows denotes motion
vectors while the red arrows denote wrong motion vectors.

we aim to derive the unknown Dt+1 from known depth Dt

of Ft. In the first stage, we uniformly sample the initial
points in Ft+1. Then, LK tracking is performed to obtain
motion vectors (vx, vy) of these initial points (x, y). Sub-
sequently, we utilize tensor voting [8] in the 4D space to
capture reliable points (x, y, vx, vy), which belong to curves
or surfaces. The corresponding sparse depth D̂t+1 can be
obtained. In the second stage, we incorporate coordinate,
motion and color features to represent reliable points in 8D
space (x, y, vx, vy, r, g, b, d). Corresponding 8D tensor is
constructed at each point. The final depth Dt+1 is estimated
via tensor-voting based interpolation from the sparse depth
D̂t+1.

2.1. Sparse Depth Estimation

Since motion-based depth propagation methods [7, 9] are sen-
sitive to object occlusions, which typically occur along the
boundaries of objects. Points in occluded areas always get
wrong matches during backward tracking. Because tensor
voting is noniterative and can tell whether a point is at certain
structures or an isolated point, it is adapted in 4D space to
eliminate isolated points and overcome this problem. Given
a pixel (x, y) with motion vector (vx, vy), we represent the
corresponding point as (x, y, vx, vy) in 4D space.

Initially, a set of initial points are uniformly sampled with
certain pixel step in the current frame Ft+1. After initial
points are selected, LK tracker [10] is applied to find corre-
sponding matches. Considering that homogeneous areas may
be problematic for the LK tracker, we remove points of homo-
geneous areas based on the small eigenvalue of the structure
tensor.

Later, (vx, vy) is estimated for each initial point (x, y).
Combining coordinate (x, y) and motion vector (vx, vy), the
resulted candidates appear as a cloud of (x, y, vx, vy) points
in the 4D space. We represent each 4D point as a second
order, symmetric, non-negative definite tensor T , which is
equivalent to a 4×4 matrix and can be decomposed according
to Eq. 1 when N = 4:

T =

N∑
i=1

λieie
T
i

=

N∑
i=1

[(λi − λi+1)

i∑
k=1

eke
T
k ] + λN

N∑
i=1

eie
T
i

(1)

where λi denote the eigenvalues in descending order and
ei are the corresponding eigenvectors. Because the initial
matches do not provide any orientation, we encode each ten-
sor T in the 4D space as ball tensor, which is an identity
matrix. Through the voting step, each tensor collects votes
from its neighbors using Eq. 2,

R(A) =
∑

Bi∈N(A)

Bvote(A,Bi)

=
∑

Bi∈N(A)

e−(
s2

σ2
)

(
I − ~v~vT

‖~vT~v‖

) (2)

where A is a vote receiver point, Bi is a voter point in the
neighborhood of A, ~v =

−−→
BiA , s = |~v|, σ is a parameter.

R(A) is also a second order, symmetric, non-negative defi-
nite tensor which can be decomposed using Eq. 1. We can get
the 2D variety saliency λ2 − λ3 of A. If a point results from
a wrong match, it is more like an isolated in the 4D space.
Because the isolated point collects weak votes from its neigh-
bors, it has small 2D variety saliency value. We eliminate iso-
lated points with small saliency value. Thus, reliable points
set P = {Pi, i = 1, · · · , N} is obtained with N points. Fi-
nally, the sparse depth D̂t+1 is derived at location of reliable
points by shifted bilateral filtering [6].

2.2. Tensor-voting based Depth Interpolation

In this subsection, unknown depth value in Dt+1 can be
estimated from obtained reliable points set P = {Pi, i =
1, · · · , N} and the corresponding sparse depth D̂t+1. We en-
capsulate position (x, y), motion vector (vx, vy) and color in-
formation (r, g, b) to represent all points ofDt+1 as (x, y, vx, vy, r, g, b, d)
in the 8D space. d is the depth value in pixel (x, y), and only
depth value dPi in P are observed. We denote unknown
points set as Q = {Qi, i = 1, · · · ,M}. In order to esti-
mate depth dQi , we take the 8D space as input-output space,
where input space is (x, y, vx, vy, r, g, b) and output variable
is d. Unobserved depth values dQ can be inferred from dP in
sparse depth D̂t+1 by tensor-voting based interpolation.

1697



Table 1. Tensor Interpretation in the 8D Space
Dim Saliency Normals Tangents

0 λ8 e1,e2,· · · ,e7,e8 none
1 λ7 − λ8 e1,e2,· · · ,e7 e8
...

...
...

...
5 λ3 − λ4 e1,e2,e3 e4,e5,e6,e7,e8
6 λ2 − λ3 e1,e2 e3,e4,· · · ,e8
7 λ1 − λ2 e1 e2,e3,· · · ,e8

We assume that each point Pi ∈ P is lying on a mani-
fold. Tensor voting is used to extract local structures in this
manifold. The local structure is characterized by normal and
tangent vectors. The structure in the 8D space can be repre-
sented as parametric equations: x = x, y = y, r = r, g =
g, b = b, vx = vx(x, y), vy = vy(x, y), d = d(x, y, r, g, b).
Because these equations are controlled by the five parame-
ters (x, y, r, g, b). The local structure can be characterized by
three normal vectors and five tangent vectors, as shown in Ta-
ble 1. The five tangent vectors span a tangent space Vi of Pi,
as Eq. 3.

V = span{e4, e5, e6, e7, e8} (3)

The local smoothness around Pi is maintained in the derived
tangent space. Thus, we can interpolate a new point in the
neighborhood of Pi.

Algorithm 1 is illustrated to infer dQ. When dQ has
been inferred, depth of Dt+1 is obtained. We denote Pt

and Qt as the projection of P and Q into the input space
(x, y, vx, vy, r, g, b), respectively. Pt,i and Qt,i are the corre-
sponding points of Pi and Qi in input space. When estimat-
ing the depth of a point Qi ∈ Q, we first find Qt,i’s nearest
neighbor point Pt,j ∈ Pt. Then, we can calculate the direc-
tion
−−−−−→
Pt,jQt,i in the input space and project it back into the

8D space. The selected Pj ∈ P is taken as the starting point
on the manifold. The desired direction ~w is the projection of
the vector

−−−−−→
Pt,jQt,i on the tangent space Vj of Pj . Then, we

take a small step along ~w towards Qi to get Q̂, according to
Q̂ = Pj + τ ~w. The approximation stops when Q̂ is within ε
of Qi. Q̂ in the 8D space is the desired interpolated point for
Qi. Thus, the depth value of Qi equals dQ̂. When the depth
of all points in Q are interpolated, Dt+1 is generated finally.

3. EXPERIMENTAL RESULTS

The proposed method is evaluated over ten video sequences,
where eight test sequences are collected from the Philips
WowVc c© project, Sequence 9 “Interview” from Heinrich-
Hertz-Institut, and “Inner-gate“ from [7]. In order to verify
the effectiveness of the proposed method, three popular depth
estimation methods are compared, i.e., improved depth prop-
agation (Varekamp et al.) [4], bi-direction motion estimation
and compensation (Li et al.) [7], and motion compensation
with trilateral filtering (Wang et al.) [9]. Several examples

Algorithm 1 Tensor Voting-based Depth Propagation
Task: Generate dense depth Dt+1.
Initialization: Input P , Q
for all i ∈ [1, N ] do

Encode ball tensor Ti as identity matrix I for Pi

end for
Set Pt as the projection of P in input space
Set Qt as the projection of Q in input space
Construct k-d trees of P and Pt for fast neighbor searching
2.Tangent Space Calculation by Voting
for all i ∈ [1, N ] do

Compute ball voting R(Pi) according to Eq.2
end for
for all i ∈ [1, N ] do

Decompose Ri’s eigensystem according to Eq.1
Calculate the tengent space Vi of Pi

end for
3. Depth Estimation for Q
for all i ∈ [1,M ] do

Find Pt,j as the nearest neighbor of Qt,i

Project
−−−−−→
Qt,iPt,j into Vj to get desirable direction ~w

Q̂← Pj + τ ~w

while Q̂ is not within ε of Qt,i do
Set Q̂ as a new start point
Calculate Q̂’s tengent space and get desirable direction ~w
Q̂← Q̂+ ~w

end while
dQi ← dQ̂

end for
4. Output:Dt+1

of the estimated depth maps are displayed in Fig. 2. It is
clearly shown that the proposed method can obtain reliable
depth estimation in occlusion boundary areas. For Sequence
Philips-1, due to occlusion, existing methods [7, 9] misuse
the depth of moving foreground object to estimate that of
occluded background areas, while the proposed method has
good performance.

Furthermore, objective quality assessment is enabled
to compare the proposed method with the aforementioned
state-of-the-art methods. The original depth map of those se-
quences is taken as ground truth. The average mean squared
error between original depth and propagated depth maps is
calculated and listed in Table 2. It is easy to find that the pro-
posed method outperforms other methods in all sequences.
Besides, the relevant Structure Similarity (SSIM) index is
utilized to evaluate the difference in structural information,
which is demonstrated in Table 3. Obviously, the proposed
method achieves the best performance because it preserves
the depth structure with higher fidelity.

4. CONCLUSIONS

Depth propagation is a major part of depth estimation, which
plays a critical role in semi-automatic 2D-to-3D video con-
version. This paper presents a robust framework where tensor
voting is utilized to eliminate occlusion points, thereby de-
riving accurate sparse depth. Then, we incorporate a variety
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Fig. 2. Estimated depth maps of four testing sequences (from top to bottom): Inition-1, Philips-1, HeadRotate and Interview.
The PSNR values of depth maps are shown, respectively.

Table 2. Average Mean Squared Error
Vare. [4] Li [7] Wang [9] Ours

Inition-1 40.91 16.89 32.68 11.28
Inition-2 7.55 5.51 6.32 3.97
Philips-1 94.83 41.98 32.68 25.12
Philips-2 548.9 190.7 388.2 163.2
Dice-1 124.7 86.97 113.8 52.79
Dice-2 70.01 69.25 79.88 37.92
HeadRotate 79.78 19.27 57.99 16.20
Building 360.4 105.8 192.3 69.28
Interview 98.73 45.03 68.32 30.13
Inner-gate 529.9 156.4 195.3 98.55

of features to represent points in sparse depth as high dimen-
sional tensor. A dense depth is formed via tensor-voting based
interpolation. It is robust against object occlusion and inaccu-
rate motion estimation, and could capture the structures.
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